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Finite Probability Space

Probability space (Ω, P ) is a mathematical construct that provides
a formal model of a random process or “experiment”

A sample space Ω: the set of all possible outcomes.
each individual element in Ω is called a basic event

A probability function: which assigns each event in the event
space a probability, which is a real number between 0 and 1.

Random variable X is a measurable function P : Ω→ S from
sample space Ω to a measurable space S, i.e., [0, 1].

Ω = {1, 2, 3, 4, 5, 6}
Basic event Ei: the dice lands on i

P (Ei) = 1/6 for i ∈ [6]
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Composition of Events

Ē: the complement of event E, i.e., E does not occur.
Definition ⇒ Pr[Ē] = 1− Pr[E]

E1 ∧ E2 denotes their conjunction: both E1 and E2 occur
Definition ⇒ Pr[E1 ∧ E2] ≤ min{Pr[E1],Pr[E2]}
E1 and E2 are independent ⇒ Pr[E1 ∧ E2] = Pr[E1] · Pr[E2]

E1 ∨ E2 denotes their disjunction: either E1 or E2 occurs
Definition ⇒ Pr[E1 ∨ E2] ≥ max{Pr[E1],Pr[E2]}
E1 and E2 are independent ⇒ Pr[E1 ∨E2] = Pr[E1] +Pr[E2]

Example. Let E be the event that a random dice throw is even.
Clearly, E = E1 ∨ E2 ∨ E3, and Pr[E] = 1/6 + 1/6 + 1/6 = 1/2.

Union Bound. Pr[
∨k

i=1Ei] ≤
∑k

i=1 Pr[Ei]

4 / 64



Expectation

Let X be a random variable. Its expectation (or, expected value)
E(X) is the probability-weighted average of x ∈ Ω:

E(X) =
∑
x∈Ω

x · Pr[X = x] =
∑
x∈Ω

x · P (x)

Two useful properties of expectation
When Ω = {0, 1}, we refer to X as a 0-1 variable.

E(X) =
∑
x∈Ω

x · P (x) = Pr[X = 1]

Linearity. For variables X and Y with arbitrary dependencies:

E(aX + bY ) = aE(X) + bE(Y ), a, b ∈ N

E(
k∑

i=1

Xi) =

k∑
i=1

E(Xi)

expectation of the sum is the sum of the expectation
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Applications of Linearity

Benefit. Decouples a complex calculation into simpler pieces.
We then provide two examples of how to use linearity of
expectation.

Lemma. Let x be a event that happens with probability p. Then
on average the experiment needs to be carried out 1/p times until
it happens.

Proof 1. Using total probability theorem:

N = 1 · p+ · · ·+ i · (1− p)i−1p+ · · · ⇒ N = 1/p

Proof 2. Let N be the expected number of times before it
happens. We certainly need at least one shot, and if it happens,
we’re done. If not (which occurs with probability 1− p), we need
to repeat. Hence: N = 1 + [p · 0 + (1− p) ·N ]⇒ N = 1/p
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Guessing Cards (without memory) (1/2)

Game. Shuffle a deck of n cards; turn them over one at a time;�
try to guess each card.
Memoryless guessing. Cannot remember what’s been turned over
already; Guess a card from full deck uniformly at random.
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Guessing Cards (without memory) (2/2)

Claim. The expected number of correct guesses is 1.
Proof. [surprisingly effortless using linearity of expectation]

Let Xi = 1 if i-th prediction is correct and 0 otherwise.
Let X = number of correct guesses = X1 + · · ·+Xn.
E[Xi] = Pr[Xi = 1] = 1/n.
linearity ⇒
E[X] = E[X1] + · · ·+ E[Xn] = 1/n+ · · ·+ 1/n = 1.
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Guessing Cards (with memory) (1/2)

Game. Shuffle a deck of n cards; turn them over one at a time;�
try to guess each card.
Guessing with memory. Guess a card uniformly at random from
cards not yet seen.
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Guessing Cards (with memory) (2/2)

Claim. The expected number of correct guesses is Θ(logn).
Proof.

Let Xi = 1 if i-th prediction is correct and 0 otherwise.
Let X = number of correct guesses = X1 + · · ·+Xn.
E[Xi] = Pr[Xi = 1] = 1/(n− (i− 1)).
linearity ⇒ E[X] = E[X1] + · · ·+ E[Xn] =
1/n+ · · ·+ 1/2 + 1/1 = H(n) = Θ(logn).
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Coupon Collector (1/3)

Coupon collector. Each box of cereal contains a coupon. There are
n different types of coupons. Assuming all boxes are equally likely
to contain each coupon, how many boxes before you have ≥ 1
coupon of each type?
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Coupon Collector (2/3)

Claim. The expected number of steps is Θ(n logn).
Proof.

Def. Phase j: period between j and j + 1 distinct coupons.
Let Xj = number of steps you spend in phase j.
Let X = number of steps in total = X0 +X1 + · · ·+Xn−1.

E(X) =

n−1∑
j=1

E(Xj) =

n−1∑
j=0

n

n− j
= n

n∑
i=1

1

i
= nH(n)

probability of success = (n− j)/n ⇒� expected steps = n/(n− j)
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Coupon Collector (3/3)

If the distribution of Xi is not uniform, E(X) will be higher.

长大之后我才知道, 水浒卡是一代人共同的记忆, 可能有数千万
人卷入其中. 据说, 小浣熊公司挣到几个亿, 用利润建起一栋办公
大楼. —某知乎网友
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Markov’s Inequality

Markov’s inequality. Let X be a non-negative random variable and
v > 0. Then Pr[X ≥ v] ≤ E(X)/v.
Proof. Say X takes values in Ω. We have:

E(X) =
∑
x∈Ω

x · Pr[X = x]

≥
∑

x∈Ω,x<v

0 · Pr[X = s] +
∑

x∈Ω,x≥v

v · Pr[X = s]

= v · Pr[X ≥ v]

Markov’s inequality is useful when little is known about X.
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Chernoff Bounds (above mean) (1/2)

Theorem. Suppose X1, . . . , Xn are independent 0-1 random
variables. Let X = X1 + · · ·+Xn. Then for any µ ≥ E[X] and for
any δ > 0, we have:

Pr[X > (1 + δ)µ] ≤
[

eδ

(1 + δ)1+δ

]µ
sum of independent 0-1 random variables� is tightly centered
on the mean

Proof. We apply a number of simple transformations. ∀t > 0,
Pr[X > (1 + δ)µ] = Pr[etX > et(1+δ)µ] ≤ e−t(1+δ)µ · E(etX)

etx is monotone in x Markov’s inequality: Pr[X > a] ≤ E(X)/a

E(etX) = E(et
∑

i=1 Xi) =
∏

i E(etXi)

definition of X independence among Xi

15 / 64



Chernoff Bounds (above mean) (2/2)

Let pi = Pr[Xi = 1]. By the fact that ∀α ≥ 0, 1 + α ≤ eα, we
have:

E(etXi) = pie
t + (1− pi)e

0 = 1 + pi(e
t − 1) ≤ epi(e

t−1)

Combining everything:

Pr[X > (1 + δ)µ] ≤ e−t(1+δ)µ
∏
i

E(etXi) //previous slide

≤ e−t(1+δ)µ
∏
i

epi(e
t−1) //inequality above

≤ e−t(1+δ)µeµ(e
t−1) //

∑
i

pi = E(X) ≤ µ

Finally, choose t = ln(1 + δ).

16 / 64



Chernoff Bounds (below mean)

Theorem. Suppose X1, . . . , Xn are independent 0-1 random
variables. Let X = X1 + · · ·+Xn. Then for any µ ≤ E(X) and
for any 0 < δ < 1, we have:

Pr[X < (1− δ)µ] < eδ
2µ/2

Proof idea is similar.
Remark. Not quite symmetric since only makes sense to consider
δ < 1.
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Motivation: Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a
subset� S ⊆ U so that inserting, deleting, and searching in S is
efficient.

S ⊆ U is what we actually care about, which may be static or
dynamic. Typically |S| ≪ |U |, e.g., S is the set of names of
students in this class ≪ 12880.

Dictionary interface.
create(): initialize a dictionary with S = ∅.
insert(u): add element u ∈ U to S.
delete(u): delete u from S (if s is currently in S).
lookup(u): is u in S?

Applications. File systems, databases, compilers, checksums P2P
networks, associative arrays, cryptography, web caching, AI search
algorithm etc.
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Easy Case: Static Dictionary

For static dictionary, we could use a sorted array with binary search
for lookups. |S| ≪ |U | and will be fixed once for all.

create ; O(|S| log |S|) (sort)
lookup ; O(log |S|)
no delete and insert

How about dynamic dictionary?
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Challenges for Dynamic Dictionary

Universe U can be extremely large, S could be grow increasingly
1 Attempt 1: Use sorted array as static dictionary, complexity of

lookup is O(log |S|), complexity of insert and delete is high ;
O(|S|)

2 Attempt 2: Define an array A of size |U |, set A[u] = 1 if and
only if u ∈ S.

U may not a subset of N ; elements can not be directly used
as index
U could be so large ; A will be very large and complexity
now depends on |U |, not |S|

Right data structure for dynamic dictionary
Balanced search tree.
Hashing gives an alternative approach: often the fastest and
most convenient way
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Hashing

Hash function. h : U → {0, 1, . . . , n− 1}.
Idea of hashing approach: array + separate chaining

Create an array A[n], each A[i] stores a linked list of elements
u with h(u) = i.
To insert an element u, place u at the top of the list at
A[h(u)].
To perform a lookup of element u, simply compute the index
i = h(u), and then walk down the list at A[i] until you find it
(or walk off the list).
To delete, one simply has to perform a delete operation on the
associated linked list.

A[0] joy nice

A[1] ⊥...
A[n− 1] good
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Thinking

The role of hash is two-fold
shrink a large universe U (could be sparse) to a small universe
of size n

the small universe is a subset of N ; can be used as index

One great property of hashing is that all the dictionary operations
are incredibly easy to implement.

The question we now turn to is:

What do we need for a hashing scheme to achieve good
performance?
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Desirable Properties of Good Hash Function

Efficiently computable. h is fast to compute.
Relatively easy to attain: we will view the time to compute
h(x) as a constant.
Remember in our heads: h shouldn’t be too complicated,
because that affects the overall runtime.

Few collisions. collision ↔ h(u) = h(v) but u ̸= v

Collisions affect the time to perform lookups and deletes.
Collision is inevitable after Θ(

√
n) (birthday paradox) random

insertions, but we hope that collisions are few so that keys are
nicely spread out.
Note that insert take time O(1) no matter what the length of
the chain, while lookup and delete takes time linear to the
length of the chain. Given nicely spread property, the time to
lookup an item x is O(1) when m = |S| = O(n).
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Low-complexity Deterministic Hash Function

We refer to low-complexity and deterministic hash function as
ad-hoc hash function.

Lot of ad-hoc functions that work well in practice for typical sets
S, but fails to provide good worst-case guarantee
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Bad News about Ad-hoc Hashing

Ad-hoc hash cannot offer any guarantee in adversarial setting if
|U | ≥ mn, where |S| = m.

Pigeon-hole principle + Deterministic ⇒ there are at least one
bin have m elements
Low-complexity ⇒ easy to invert: the adversary may choose
S to be precisely such m elements (the preimage of a bin)
Consequently, all data keys land in the same bin, making
hashing useless ; lookup, delete complexity is O(|S|)

When can’t we live with ad-hoc hash function?

Obvious situations: aircraft control, nuclear reactor, pace maker
Surprising situations: denial-of-service attacks.

malicious adversary learns your ad-hoc hash function (e.g., by
reading Java API) and causes a big pile-up in a single slot
that grinds performance to a halt
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Hashing Performance

Ideal hash function. Maps arbitrary m elements uniformly at
random to n hash slots.

Such requirement guarantees a low number of collisions in
expectation, even if the data is chosen by an adversary.

Running times of all operations depend on length of chains
Average length of chain = α = m/n

Choose n ≈ m⇒ expect O(1) per insert, lookup, or delete

Attempt. Pick a random function from all hash function that maps
U to Zn (truly random). The adversary knows the set of all hash
functions, but doesn’t know the random choice you make.
Challenge. The set of all functions is too large ; even not be
efficiently sampleable
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Universal Hashing (Carter-Wegman 1980s)

Truly random is overkill. Weaker property might be sufficient and
admits small set of hash functions.

A universal family of hash functions is a set of hash functions H
mapping a universe U to the set {0, 1, . . . , n− 1} such that:

For any pair of elements u ̸= v:

Pr
h

R←−H

[h(u) = h(v)] ≤ 1/n

Can sample random h efficiently.
Can compute h(u) efficiently.

Intuition. Any two keys of the universe collide with probability at
most 1/n when h

R←− H.

29 / 64



Why not other Definitions?

Alternative definition???

∀u ∈ U,∀y ∈ Zn, Pr
h

R←−H

[h(u) = y] ≤ 1/n

Issues
Fail to capture uniform requirement
Pathological example: easy to build H meeting the above
definition, but each hi ∈ H map all inputs to the same value i
; totally useless
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Example of (Non-)Universal Hashing
U = {a, b, c, d, e, f}, n = 2

Table: Non-Universal Hashing

H a b c d e f

h1(x) 0 1 0 1 0 1

h2(x) 0 0 0 1 1 1

H = {h1, h2}, h
R←− H

Pr[h(a) = h(b)] = 1/2

Pr[h(a) = h(c)] = 1

Pr[h(a) = h(d)] = 0

. . .

Table: Universal Hashing

H a b c d e f

h1(x) 0 1 0 1 0 1

h2(x) 0 0 0 1 1 1

h3(x) 0 0 1 0 1 1

h4(x) 1 0 0 1 1 0

H = {h1, h2, h3, h4}, h
R←− H

Pr[h(a) = h(b)] = 1/2

Pr[h(a) = h(c)] = 1/2

Pr[h(a) = h(d)] = 1/2

Pr[h(a) = h(e)] = 1/2

Pr[h(a) = h(f)] = 0

. . .
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Key Lemma

Theorem. Let H be a universal family of hash functions mapping a
universe U to the set Zn, let h R←− H; then for any set S ⊆ U of
size m, for any u ∈ U (e.g., that we might want to lookup), the
expected number of collisions between u and other elements in S
is at most |S|/n.

Proof. Let Cu be a random variable counting the total number of
collisions with u, induced by h

R←− H. For any s ∈ S, define
random variable Cus = 1 if h(s) = h(u) and 0 otherwise.

E[Cu] = E[
∑

s∈S Cus] //definition of Cu, Cus

=
∑

s∈S E[Cus] //linearity of expectation
=

∑
s∈S Pr[Cus = 1] //Cus is 0-1 variable

≤
∑

s∈S
1
n = |S|

n //universal
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Application to Dictionary Construction

We now immediately get the following corollary.

Corollary. If H is universal then for any element u insert, lookup,
and delete operations in which there are at most m elements in the
system at any one time, the expected total complexity of operation
for a random h

R←− H is only O(m/n) (viewing the time to
compute h as constant).

Proof. According to the above theorem, for any given u, the
expected number of collisions is bounded by m/n, so is the
average length of chain ⇒ the expected complexity of all
operations is bounded by O(m/n).

Question: can we actually construct a universal H?
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Construction and Application of UHF

The answer is affirmative.

Many universal families are known (for hashing integers, vectors,
strings), their evaluation is often very efficient, and their security is
unconditional (do not rely on any assumptions).

Universal hashing has numerous uses in computer science,
implementations of hash tables
randomized algorithms
cryptography
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Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash
table.
Input encoding. Assume U ⊆ [0, pℓ − 1] for some integer ℓ. We
can identify each element u ∈ U with a base−p integer of ℓ digits:
u = x = (x1, x2, . . . , xℓ). Alternatively, we view each element u as
a ℓ-dimension vector over Zp

Hash function family. Let a = (a1, a2, . . . , aℓ) be function index or
key, let A = Zℓ

p. Define H = {ha : a ∈ A}, where ha is defined as:

ha(x) = ⟨a, x⟩ mod p =

(
ℓ∑

i=1

aixi

)
mod p

maps universe U to set {0, 1, . . . , p− 1}
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Proof of Construction

Theorem. H = {ha : a ∈ A} is a family of UHF.

Proof. Let x = (x1, x2, . . . , xℓ) and y = (y1, y2, . . . , yℓ) be two
distinct elements of U .� Show that Pr[ha(x) = ha(y)] ≤ 1/p,
where a R←− Zℓ

p.
Since x ̸= y, there exists at least one index j such that xj ̸= yj .
We have ha(x) = ha(y) iff

aj (yj − xj)︸ ︷︷ ︸
z

≡
∑
i ̸=j

ai(xi − yi)︸ ︷︷ ︸
m

(mod p)

Assume a was chosen uniformly at random by first selecting
all ai where i ̸= j, then selecting aj at random.
Since p is prime, ajz ≡ m mod p has exactly one solution
among p possibilities ⇐ z ≠ 0 is invertible in group Z∗

p, Zp

does not have zero divisor.
Thus Pr[ha(x) = ha(y)] ≤ 1/p.
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Universal hashing: Summary

Goal. Given a universe U , maintain a subset S ⊆ U so that insert,
delete and lookup are efficient.
Use universal hashing to build hash map, choose p so that
m ≤ p ≤ 2m, where m = |S|

Fact: there exists at least one prime between m and 2m, can
be found by another randomized algorithm.

Consequence
Space used: Θ(m).
Expected number of collisions per operation is ≤ 1 ⇒ O(1)
time per insert, delete, or loop up
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Discussion

Q. Why not directly using cryptographic hash functions?
not randomized in nature ; any form of uniformity rely on
assumptions
cryptographic hash functions are heavy to use
output length is typically at least 128 bits ; might be too
large for applications; truncating output may compromise
collision resistance

Q. Why not using pseudorandom functions?
full-fledged pseudorandomness is overkill for uniform hashing
purpose
too strong ; heavy to use
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Summary

UHF does not capture any form of independence, pairwise
independent hash does, capturing mutual independence.

UHF only captures a weak version of collision resistance: collision
resistance on small domain

Bazinga: we can compile UHF to CRHF using lossy functions

Such weak form of collision resistance implies uniformity define
over any set (say, S) ; suffices for application of dictionary
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Randomization

Algorithmic design patterns
Greedy
Divide-and-conquer
Dynamic programming
Randomization

Randomization. Allow fair coin tossing
In practice, access to a PRG

The benefit of randomize: Can lead to simplest, fast, or only
known algorithm for a particular problem.
Examples. Graph algorithms, quicksort, quickselect, hashing,
cryptography
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BPP and ZPP

Two-sided error.
BPP. [Monte Carlo] problems solvable with two-sided error in
poly-time. (name after the famous gambling resort)

One-sided error.
RP. If the correct answer is yes, return yes with probability
≥ 2/3. If the correct answer is no, always return no.
co-RP. If the correct answer is no, return no with probability
≥ 2/3. If the correct answer is yes, always return yes.

can decrease error probability to negligible�

Zero-sided error.
ZPP. [Las Vegas] problems solvable in expected poly-time.
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Relation to Other Complexity Classes

Theorem. P ⊆ ZPP = RP ∩ co-RP ⊆ BPP ⊆ NP

Central open questions
Does P = BPP? This question concerns to what extent does
randomization help.

Many complexity theorists acturally believe that P = BPP.
In other words, there is a way to transform every probabilistic
algorithm to a deterministic algorithm (one does not toss any
coins) while incurring only a polynomial slowdown.

Role of randomness extends far beyond a study of randomized
algorithms and classes such as BPP.

entire area of cryptography, including encryption, signature,
interactive and probabilistically checkable proofs rely on
randomness in an essential way
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Randomized Quicksort

Standard Quicksort. Always pick the first element as pivot. The
consequence is that the worst-case complexity (when the input
array is already sorted) is O(n2)

W (n) = W (0) +W (n− 1) +O(n)⇒W (n) = O(n2)

Randomized Quicksort. Each time randomly select an element x as
pivot. Clearly, the probability of x being the i-th element is 1/n,
thus split the array into three parts: [0, i− 1], [i], [i+ 1, n]:

T (n) =
1

n

(
n−1∑
i=0

(T (i) + T (n− 1− i))

)
+ (n− 1)

=
2

n

n−1∑
i=0

T (i) + (n− 1)

= Θ(n lnn)

45 / 64



Randomized Quickselect (1/2)

Standard Quickselect. First divide all the elements into grpups of
size 5, selects their medians, and then selects median m∗ from
these medians, using m∗ as pivot to split the array.

W (n) = W (7n/10) +W (n/5) +O(n)⇒W (n) = Θ(n)

Randomized Quickselect. Randomly select an element as the pivot.
Best-case: keep picking the median, yield ideal situation being
|SL|, |SR| ≈ |S|/2 ; T (n) = T (n/2) +O(n).
Worst-case: we keep picking m∗ to be the largest (or the
smallest) element, and thereby shrink the array by only one
element each time ; T (n) = Θ(n2).

Where, in this spectrum from O(n) to Θ(n2), does the average
running time lie? Fortunately, it lies very close to the best-case

time.
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Randomized Quickselect (2/2)
The running time depends on the random choices of m∗.

To distinguish between lucky and unlucky choices of m∗, we
will call m∗ good if it lies within 25-th to 75-th percentile of
the array. We like these choices of m∗ because they ensure
that the sublists SL and SR have size of at most 3/4 that of
S, so that the array shrinks substantially.
Good m∗’s are abundant: half the elements of any list must
fall between the 25th to 75th percentile.

bad good bad

Randomly pick and check: on average two try we will obtain a
good m∗:

T (n) ≤ T (3n/4) +O(n)⇒ T (n) = O(n)

Expected polynomial time. On any input, the randomized
algorithm returns the correct answer after a linear number of
steps, on the average.
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Primality Testing

Primality testing. Given an integer N and wish to determine
whether or not it is prime.
Algorithms for primality testing were sought after even before the
advent of computers, as mathematician needed them to test
various conjectures.

Ideally, we want efficient algorithms that run in time
polynomial in the size of N ’ representation, i.e., poly(logN).
For centuries mathematicians knew of no such efficient
algorithm for this problem.
In 1970’s efficient probabilistic algorithms for primality testing
were discovered, give one of the first demonstration of the
power of probabilistic algorithms.
At 2004, Agrawal, Kayal, and Saxena gave a deterministic
polynomial-time algorithm for primality testing (breakthrough)
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Miller-Rabin Primality Test

The key to the Miller-Rabin algorithm is to find a property that
distinguishes primes and composites.

Fact 1: If N is prime, then ∀a ∈ {1, . . . , N − 1} we have
aN−1 = 1 mod N

This suggests testing whether N is prime by choosing a uniform
element a and checking whether aN−1 ?

= 1 mod N .
If aN−1 ̸= 1 mod N , then N cannot be prime. We refer to
any such a a witness that N is composite.
Conversely, we might hope that if N is not prime then there is
a reasonable chance that a randomly chosen a is a witness for
composite, and so by repeating this test many times we can
determine whether N is prime or not with high confidence.
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The Distribution of Witness

Recall that exponentiation modulo N and choosing a uniform
element of [N − 1] can also be done in polynomial time. It seems
that the problem has been solved.

If N is a composite, how many witnesses in {1, . . . , N − 1}?
If a /∈ Z∗

N , then aN−1 ̸= 1 mod N (if gcd(a,N) ̸= 1 then
gcd(aN−1, N) ̸= 1) ⇒ a is a witness for N is a composite.
But, witnesses outside Z∗

N are few. Actually, if you find one
a /∈ Z∗

N , you can factor N .
We therefore restrict our attention to witness a ∈ Z∗

N .
By two simple group-theoretic lemmas, we conclude that:

Fact 2. If there exists one witness that N is composite, then at
least half the elements of Z∗

N are witnesses for N is composite.

However, the above does not give a complete solution since there
are infinitely many composite numbers N that do not have any
witnesses. Such N are known as Carmichael numbers.
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Strong Witness: A Refinement of the above Test

Happily, a refinement of the above test can be shown to work for
all N.
Let N − 1 = 2ru, where u is odd and r > 1. The algorithm shown
previously tests only whether aN−1 = a2

ru ≡ 1 mod N .
A more refined algorithm looks at the sequence of r + 1 values:

au, a2u, . . . , a2
ru all modulo N

Each term in this sequence is the square of the preceding term. If
some value is equal to ±1 then all subsequent values will be equal
to 1.
Strong witness. a ∈ Z∗

N is a strong witness if
1 au ̸= ±1 mod N

2 a2
iu ̸= −1 mod N for all i ∈ {1, . . . , r − 1}
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Wrapping all it Together

Theorem. Let N be an odd number that is the not a prime power.
Then at least half the elements of Z∗

N are strong witnesses that N
is composite.

Algorithm 1: Miller-Rabin primality test
Input: N > 2

1: if N is even then return “composite”;
2: if N is a perfect power then return “composite”;
3: compute r > 1 and odd u such that N − 1 = 2ru;
4: for j = 1 to t do
5: a

R←− {1, . . . , N − 1};
6: if a is strong witness then return “composite”;
7: end
8: return “prime”

N ∈ PRIME⇒ Pr[M(N) = 1] = 1

N /∈ PRIME⇒ Pr[M(N) = 0] ≥ 1− 2−t

53 / 64



Outline

1 Preliminaries on Probability Theory

2 Randomized Data Structure
Dictionary

3 Randomized Algorithm
Randomized Quicksort and Quickselect
Probabilistic Primality Testing
Schwartz-Zippel Lemma and Applications

Polynomial Identity Test
Matrix Identity Test

4 Summary

54 / 64



Schwartz-Zippel Lemma

DeMillo-Lipton-Schwartz-Zippel Lemma. Let P ∈ F[x1, . . . , xn] be
a non-zero polynomial of total degree d ≥ 0 and let α1, . . . , αn be
selected independently at random from S ⊂ F. Then,

Pr[P (α1, . . . , αn) = 0] ≤ d

|S|

In the single variable case, it follows directly from the fact that a
polynomial of degree d can have no more than d roots.

The degree of a monomial is the sum of the exponents of variables
in the monomial; the degree of a polynomial is the maximum degree
of any monomial in it.

Application of Schwartz-Zippel lemma
probabilistic polynomial identity testing
construction of universal hash
primality testing
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Comparison of Two Polynomials

Polynomial identity test: Given two polynomials C(x) and D(x)
over a finite field F. decide if they are equal.
Applications: branching programs, probabilistic checkable proofs

Why this problem is not trivial?

It seems that we can check them one by one ⇒ complexity is
O(n), where n = max{deg(C), deg(D)}.
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Refinement of Problem

The above check only works when the coefficents are given in
plain. We need to consider the following two cases.
Case 1: the representation of polynomial is complicated, the
unrolling could be way too expensive

Example 1. D(x) is of the form A(x) ·B(x), to figure out the
coefficients of D(x) needs polynomial multiplication

Naive algorithm: computing coefficients via convolution O(n2)
FFT: O(n logn)

Example 2. D(x) = Πn
i=1(x+ i), complexity of naive unrolling

is O(n2)

Case 2: the representation of polynomial is hidden (probably for
privacy concerns), the algorithm is only given access to an
evaluation oracle

Can we solve the problem without naive comparing method?

A. Yes. Randomness can help!
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Polynomial Identity Test

Polynomial identity test [surprisingly simple]
Randomly picks α

R←− F, output “yes” if C(α) = A(α) ·B(α)
and “no” otherwise.

Analysis
Complexity: given coefficient representation, the cost of
polynomial evaluation is 3 ·O(n), the cost of comparison is
O(1) ; total complexity is O(n)

When C(x) = A(x) ·B(x): algorithm’s output is always “yes”
When C(x) ̸= A(x) ·B(x): algorithm’s output is “no” with
probability at least 1− n/|F| ⇐ Schwartz-Zippel lemma

58 / 64



Matrix Identity Test

Problem. Given three n× n matrices A, B and C over Fp, where
p > n2 is a prime number. Check if A×B = C.

Naive solution. Compute A×B then compare the result with C.
The complexity is reduced to matrix multiplication, that is,
O(n2.372).

Idea. Use randomized test. The main tool is universal hash.
Intuitively, it can compress a big object to small fingerprint.

But how? Let us first revisit the construction of universal hash.
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Universal Hash, Revisited

Our goal: build a family of universal hash from Fn
p → Fp.

Previous construction:

ha(x) = a0x0 + · · ·+ an−1xn−1, a, x ∈ Fn
p

By interpreting x as coefficient vector and a as the variable
vector, Schwartz-Zippel lemma (multi-variable setting) ⇒
collision probability is smaller than 1/|Fp|;

A simpler construction (this is exactly the Reed-Solomon code)

ha(x) = a1x0 + · · ·+ anxn−1, a ∈ Fp, x ∈ Fn
p

By interpreting x as coefficient vector and a the single
variable, Schwartz-Zippel lemma (single-variable setting) ⇒
collision probability is smaller than n/|Fp|.
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Freivalds’ Algorithm

[Freivalds’ Algorithm 1977] Randomized algorithm in time O(n2)

1 Pick r
R←− Fp, set x = (r, r2, . . . , rn)

2 Compute y = Cx and z = A ·Bx
3 Output “true” if y = z and “false” otherwise.

Complexity analysis: totally O(n2)

generating vector x: O(n)

matrix-vector product: 3×O(n2)

Correctness analysis
When C = A ·B: algorithm’s output is always “yes”
When C ̸= A ·B: algorithm’s output is “no” with probability
at least 1− n/|Fp| ⇐ Schwartz-Zippel lemma

at least exists one (i, j) such that Cij ̸= Dij , then consider
the difference of row vector as coefficient vector
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High-Level View

The polynomial identity test and matrix product test can be
generalized to verifiable computation via probabilistic checkable
technique

The power of randomness
Verify the correctness of computation via randomized checking
rather than re-executing

A×B =?

P V
A, B

C pick α
R←− F

check A(α)B(α)
?
= C(α)
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Monte Carlo vs. Las Vegas algorithms

Basic probability theory
Randomized data structure from universal hash
Randomized algorithms

1 Las Vegas ↔ ZPP: Guaranteed to find correct answer, likely
to run in poly-time (acturally expected poly-time).

Examples: randomized Quicksort and Quickselect
2 Monte Carlo ↔ BPP: Guaranteed to run in poly-time, likely

to find correct answer.
Examples: polynomial identity test, matrix identity test,
primality test

Remark. Can always convert a Las Vegas algorithm into Monte
Carlo,� but no known method (in general) to convert the other way.
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